31 research outputs found

    Microfluidics-based liquid chromatography/mass spectrometry multiple reaction monitoring approach for the relative quantification of Burkholderia cenocepacia secreted virulence factors

    Get PDF
    Rationale: Burkholderia cenocepacia is an opportunistic pathogen that is commonly isolated from patients with cystic fibrosis (CF). Quorum sensing has been suggested to play a role in the activity of type II and type VI secretion systems and the release of virulence factors. Apart from the classical acyl homoserine lactone quorum sensing, B. cenocepacia also uses the diffusible signal factor system (DSF). Quantitative information on the true impact of DSF molecules on the release of ZmpA and other virulence factors is lacking. Methods: Based on results of a label-free proteomics analysis addressing changes in the secretome in response to DSFs, a panel of peptides was selected to develop a microfluidics liquid chromatography/mass spectrometry (LC/MS) method implementing single reaction monitoring (SRM) to quantify B. cenocepacia virulence factors. Results: Increase in secretion of virulence factors upon treatment with BDSF was observed for ZmpA and Aida, but not for ZmpB. Type VI secretion system dependent Hcp1 and TecA were decreased. However, non-physiological amounts of BDSF were needed to provoke the effect. DSFs from P. aeruginosa and S. maltophilia were also affecting virulence factor secretion, but the effect was smaller than for the endogenous BDSF. Conclusions: Microfluidics-based SRM is a useful tool to quantitatively assess the impact of quorum sensing on the release of virulence factors by (opportunistic) pathogens

    An alphaherpesvirus exploits antimicrobial beta-defensins to initiate respiratory tract infection

    Get PDF
    beta-Defensins protect the respiratory tract against the myriad of microbial pathogens entering the airways with each breath. However, this potentially hostile environment is known to serve as a portal of entry for herpesviruses. The lack of suitable respiratory model systems has precluded understanding of how herpesvirus virions overcome the abundant mucosal p-defensins during host invasion. We demonstrate how a central alphaherpesvirus, equine herpesvirus type 1 (EHV1), actually exploits p-defensins to invade its host and initiate viral spread. The equine beta-defensins (eBDs) eBD1, -2, and -3 were produced and secreted along the upper respiratory tract. Despite the marked antimicrobial action of eBD2 and -3 against many bacterial and viral pathogens, EHV1 virions were resistant to eBDs through the action of the viral glycoprotein M envelope protein. Pretreatment of EHV1 virions with eBD2 and -3 increased the subsequent infection of rabbit kidney (RK13) cells, which was dependent on viral N-linked glycans. eBD2 and -3 also caused the aggregation of EHV1 virions on the cell surface of RK13 cells. Pretreatment of primary equine respiratory epithelial cells (EREC) with eBD1, -2, and -3 resulted in increased EHV1 virion binding to and infection of these cells. EHV1-infected EREC, in turn, showed an increased production of eBD2 and -3 compared to that seen in mock- and influenza virus-infected EREC. In addition, these eBDs attracted leukocytes, which are essential for EHV1 dissemination and which serve as latent infection reservoirs. These novel mechanisms provide new insights into herpesvirus respiratory tract infection and pathogenesis. IMPORTANCE How herpesviruses circumvent mucosal defenses to promote infection of new hosts through the respiratory tract remains unknown due to a lack of hostspecific model systems. We used the alphaherpesvirus equine herpesvirus type 1 (EHV1) and equine respiratory tissues to decipher this key event in general alphaherpesvirus pathogenesis. In contrast to several respiratory viruses and bacteria, EHV1 resisted potent antimicrobial equine p-defensins (eBDs) eBD2 and eBD3 by the action of glycoprotein M. Instead, eBD2 and -3 facilitated EHV1 particle aggregation and infection of rabbit kidney (RK13) cells. In addition, virion binding to and subsequent infection of respiratory epithelial cells were increased upon preincubation of these cells with eBD1, -2, and -3. Infected cells synthesized eBD2 and -3, promoting further host cell invasion by EHV1. Finally, eBD1, -2, and -3 recruited leukocytes, which are well-known EHV1 dissemination and latency vessels. The exploitation of host innate defenses by herpesviruses during the early phase of host colonization indicates that highly specialized strategies have developed during host-pathogen coevolution

    Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics

    Get PDF
    <div><p>Antibiotic susceptibility of bacterial pathogens is typically evaluated using <i>in vitro</i> assays that do not consider the complex host microenvironment. This may help explaining a significant discrepancy between antibiotic efficacy <i>in vitro</i> and <i>in vivo</i>, with some antibiotics being effective <i>in vitro</i> but not <i>in vivo</i> or vice versa. Nevertheless, it is well-known that antibiotic susceptibility of bacteria is driven by environmental factors. Lung epithelial cells enhance the activity of aminoglycoside antibiotics against the opportunistic pathogen <i>Pseudomonas aeruginosa</i>, yet the mechanism behind is unknown. The present study addresses this gap and provides mechanistic understanding on how lung epithelial cells stimulate aminoglycoside activity. To investigate the influence of the local host microenvironment on antibiotic activity, an <i>in vivo</i>-like three-dimensional (3-D) lung epithelial cell model was used. We report that conditioned medium of 3-D lung cells, containing secreted but not cellular components, potentiated the bactericidal activity of aminoglycosides against <i>P</i>. <i>aeruginosa</i>, including resistant clinical isolates, and several other pathogens. In contrast, conditioned medium obtained from the same cell type, but grown as conventional (2-D) monolayers did not influence antibiotic efficacy. We found that 3-D lung cells secreted endogenous metabolites (including succinate and glutamate) that enhanced aminoglycoside activity, and provide evidence that bacterial pyruvate metabolism is linked to the observed potentiation of antimicrobial activity. Biochemical and phenotypic assays indicated that 3-D cell conditioned medium stimulated the proton motive force (PMF), resulting in increased bacterial intracellular pH. The latter stimulated antibiotic uptake, as determined using fluorescently labelled tobramycin in combination with flow cytometry analysis. Our findings reveal a cross-talk between host and bacterial metabolic pathways, that influence downstream activity of antibiotics. Understanding the underlying basis of the discrepancy between the activity of antibiotics <i>in vitro</i> and <i>in vivo</i> may lead to improved diagnostic approaches and pave the way towards novel means to stimulate antibiotic activity.</p></div

    Comprehensive histone epigenetics : a mass spectrometry based screening assay to measure epigenetic toxicity

    Get PDF
    Evidence of the involvement of epigenetics in pathologies such as cancer, diabetes, and neurodegeneration has increased global interest in epigenetic modifications. For nearly thirty years, it has been known that cancer cells exhibit abnormal DNA methylation patterns. In contrast, the large-scale analysis of histone post-translational modifications (hPTMs) has lagged behind because classically, histone modification analysis has relied on site specific antibody-based techniques. Mass spectrometry (MS) is a technique that holds the promise to picture the histone code comprehensively in a single experiment. Therefore, we developed an MS-based method that is capable of tracking all possible hPTMs in an untargeted approach. In this way, trends in single and combinatorial hPTMs can be reported and enable prediction of the epigenetic toxicity of compounds. Moreover, this method is based on the use of human cells to provide preliminary data, thereby omitting the need to sacrifice laboratory animals. Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort. Still, this novel toxicoepigenetic assay and the data it generates holds great potential for, among others, pharmaceutical industry, food science, clinical diagnostics and, environmental toxicity screening. ‱ There is a growing interest in epigenetic modifications, and more specifically in histone post-translational modifications (hPTMs). ‱ We describe an MS-based workflow that is capable of tracking all possible hPTMs in an untargeted approach that makes use of human cells. ‱ Improving the workflow and the user-friendliness in order to become a high throughput, easily applicable, toxicological screening assay is an ongoing effort

    The role of small proteins in Burkholderia cenocepacia J2315 biofilm formation, persistence and intracellular growth

    Get PDF
    Burkholderia cenocepacia infections are difficult to treat due to resistance, biofilm formation and persistence. B. cenocepacia strain J2315 has a large multi-replicon genome (8.06 Mb) and the function of a large fraction of (conserved) hypothetical genes remains elusive. The goal of the present study is to elucidate the role of small proteins in B. cenocepacia, focusing on genes smaller than 300 base pairs of which the function is unknown. Almost 10% (572) of the B. cenocepacia J2315 genes are smaller than 300 base pairs and more than half of these are annotated as coding for hypothetical proteins. For 234 of them no similarity could be found with non-hypothetical genes in other bacteria using BLAST. Using available RNA sequencing data obtained from biofilms, a list of 27 highly expressed B. cenocepacia J2315 genes coding for small proteins was compiled. For nine of them expression in biofilms was also confirmed using LC-MS based proteomics and/or expression was confirmed using eGFP translational fusions. Overexpression of two of these genes negatively impacted growth, whereas for four others overexpression led to an increase in biofilm biomass. Overexpression did not have an influence on the MIC for tobramycin, ciprofloxacin or meropenem but for five small protein encoding genes, overexpression had an effect on the number of persister cells in biofilms. While there were no significant differences in adherence to and invasion of A549 epithelial cells between the overexpression mutants and the WT, significant differences were observed in intracellular growth/survival. Finally, the small protein BCAM0271 was identified as an antitoxin belonging to a toxin-antitoxin module. The toxin was found to encode a tRNA acetylase that inhibits translation. In conclusion, our results confirm that small proteins are present in the genome of B. cenocepacia J2315 and indicate that they are involved in various biological processes, including biofilm formation, persistence and intracellular growth.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Host intestinal biomarker identification in a gut leakage model in broilers

    Get PDF
    International audienceAbstractIntestinal health problems are a major issue in the poultry industry. Quantifiable easy-to-measure biomarkers for intestinal health would be of great value to monitor subclinical intestinal entities that cause performance problems and to evaluate control methods for intestinal health. The aim of the study was to identify host protein biomarkers for intestinal inflammation and intestinal barrier damage. Proteomic analysis was conducted on ileal and colonic content samples of broilers under an experimental gut damage and inflammation model. Effects of the challenge treatment resulted in a worse gut condition based on macroscopic gut appearance (p < 0.0001). Also microscopic changes such as shortening of the villi and increased crypt depth (p < 0.0001) as well as higher infiltration of T-lymphocytes (p < 0.0001) were seen in the duodenal tissue of challenged animals. Several candidate proteins associated with inflammation, serum leakage and/or tissue damage were identified with an increased abundance in intestinal content of challenged animals (p < 0.05). Conversely, brush border enzymes were less abundant in intestinal content of challenged animals (p < 0.05). These candidate biomarkers have potential to be used in the field for detection of gut barrier failure in broilers

    Removing the hidden data dependency of DIA with predicted spectral libraries

    Get PDF
    Data‐independent acquisition (DIA) generates comprehensive yet complex mass spectrometric data, which imposes the use of data‐dependent acquisition (DDA) libraries for deep peptide‐centric detection. Here, it is shown that DIA can be redeemed from this dependency by combining predicted fragment intensities and retention times with narrow window DIA. This eliminates variation in library building and omits stochastic sampling, finally making the DIA workflow fully deterministic. Especially for clinical proteomics, this has the potential to facilitate inter‐laboratory comparison

    Collaborative science : from proteomics method development to core facility

    No full text
    corecore